

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeof engg.org, email:eswarcollegeof engg@gmail.com

DEPT. OF EEE

COURSE OUTCOMES

A.Y:: 2024-25

II YEAR-I SEM

COURSE NAME: COMPLEX VARIABLES & NUMERICAL METHODS		
COURSE (COURSE CODE: EE2101	
EE2101.1	Evaluate the approximate roots of polynomial and transcendental equations by different algorithms. Apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)	
EE2101.2	Apply numerical integral techniques to different Engineering problems. Apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)	
EE2101.3	Apply Cauchy-Riemann equations to complex functions in order to determine whether a given continuous function is analytic (L3)	
EE2101.4	Evaluate the Taylor and Laurent expansions of simple functions, determining the nature of the singularities and calculating residues. Make use of the Cauchy residuetheorem to evaluate certain integrals (L3).	
EE2101.5	Explain properties of various types of conformal mappings (L5)	

COURSE NAME: UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND ETHICAL HUMAN CONDUCT

COURSE (COURSE CODE: EE2102	
EE2102.1	Define the terms like Natural Acceptance, Happiness and Prosperity (L1, L2).	
EE2102.2	Identify one's self, and one's surroundings (family, society nature) (L1, L2)	
EE2102.3	Apply what they have learnt to their own self in different day-to-day settings inreal life (L3).	
EE2102.4	Justify the need for universal human values and harmonious existence (L5)	
EE2102.5	Relate human values with human relationship and human society. (L4)	

ESWAR COLLEGE OF ENGINEERING (Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

COURSE NAME: ELECTROMAGNETIC FIELD THEORY

COURSE CODE: EE2103	
EE2103.1	Compute electric fields and potentials using Gauss law/ solve Laplace's or
	Poisson's equations for various electric charge distributions.
EE2103.3	Calculate the magnetic field intensity due to current carrying conductor and understanding the application of Ampere's law, Maxwell's second and third law.
EE2103.4	Estimate self and mutual inductances and the energy stored in the magnetic field.
EE2103.5	Understand the concepts of Faraday's laws, Displacement current, Poynting theorem and Poynting vector.

COURSE NAME: ELECTRICAL CIRCUIT ANALYSIS-II	
COURSE CODE: EE2104	
EE2104.1	Analyse the balanced and unbalanced 3 phase circuits for power
	calculations.
EE2104.2	Analyse the transient behaviour of electrical networks in different domains.
EE2104.3	Estimate various Network parameters.
EE2104.4	Apply the concept of Fourier series to electrical systems.
EE2104.5	Analyse the filter circuit for electrical circuits.

COURSE NAME: DC MACHINES & TRANSFORMERS

COURSE CODE: EE2105	
EE2105.1	Understand the process of voltage build-up in DC generators and characteristics.
EE2105.2	Understand the process of torque production, starting and speed control of DC motorsand illustrate their characteristics.
EE2105.3	Obtain the equivalent circuit of single-phase transformer efficiency®ulation.
EE2105.4	Obtain the equivalent circuit to determine its efficiency& regulation.
EE2105.5	Analyse various configurations of three-phase transformers.

ESWAR COLLEGE OF ENGINEERING (Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

COURSE NAME: ELECTRICAL CIRCUIT ANALYSIS-II AND SIMULATION LAB	
COURSE CODE: EE21L1	
EE21L1.1	Understand the power calculations in three phase circuits.
EE21L1.2	Evaluate the time response of given network.
EE21L1.3	Evaluate two port network parameters.
EE21L1.4	Analyse electrical circuits using suitable software.
EE21L1.5	Simulate electrical circuits using suitable software.

COURSE NAME: DC MACHINES & TRANSFORMERS LAB	
COURSE CODE: EE21L2	
EE21L2.1	Demonstrate starting methods of DC Machines
EE21L2.2	Apply theoretical concepts in analysing the performance characteristics of DC
	Machines.
EE21L2.3	Determine the performance characteristics of DC machines using different testing
	methods.
EE21L2.4	Determine the performance parameters of single-phase transformer
EE21L2.5	Demonstrate speed control methods of DC Machines

COURSE NAME: DATA STRUCTURES LAB	
COURSE CODE: EE21L3	
EE21L3.1	Identify the role of data structures in organizing and accessing data.
EE21L3.2	Design, implement, and apply linked lists for dynamic data storage.
EE21L3.3	Develop applications using stacks and queues.
EE21L3.4	Design and implement algorithms for operations on binary trees and binary search
	trees.
EE21L3.5	Devise novel solutions to small scale programming challenges involving data
	structuressuch as stacks, queues, Trees.

COURSE NAME: MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS	
CODE: EE2201	
Define the concepts related to Managerial Economics, financial accounting and management(L2)	
Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets (L2).	
Apply the Concept of Production cost and revenues for effective Business decision(L3)	
Analyze how to invest their capital and maximize returns (L4)	
Evaluate the capital budgeting techniques. (L5).	
Develop the accounting statements and evaluate the financial performance of businessentity (L5).	

COURSE NAME: ANALOG CIRCUITS	
COURSE CODE: EE2202	
EE2202.1	Analyze diode clipping and clamping circuits.
EE2202.2	Understand different types of biasingcircuits of a transistor.
EE2202.3	Use small signal modeling for transistor circuit analysis and illustrate the operation
	offeedback amplifiers.
EE2202.4	Understand operation of oscillators, operational amplifier and their
	applications.
EE2202.5	Use 555 timers in multi-vibrators, Schmitt Trigger and PLL applications
EE2202.6	Describe the operation of different ADC's and DAC's.

COURSE NAME: POWER SYSTEMS-I	
COURSE CODE:EE2203	
EE2203.1	Understand the different types of power plants.
EE2203.2	Understand the operation of power plants.
EE2203.3	Describe the different components of air and gas insulated substations.
EE2203.4	Discuss the construction of single core cables and describe distribution system configurations.
EE2203.5	Discuss the construction of three core cables and describe distribution system configurations.
EE2203.6	Analyse different economic factors of power generation and tariffs.

ESWAR COLLEGE OF ENGINEERING (Approved by AICTE, & Affiliated to JNTUK, A.P.)

KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeof engg.org, email:eswarcollegeof engg@gmail.com

COURSE NAME: INDUCTION AND SYNCHRONOUS MACHINES

COURSE CODE:EE2204	
EE2204.1	Explain the construction of three-phase induction motor.
EE2204.2	Explain the operation of three-phase induction motor.
EE2204.3	Analyse the performance of three-phase induction motor.
EE2204.4	Describe the working of single-phase induction motors.
EE2204.5	Analyse the performance of Synchronous generators.
EE2204.6	Analyse the performance of Synchronous motors.

COURSE NAME: CONTROL SYSTEMS

COURSE (COURSE CODE: EE2205		
EE2205.1	Derive the transfer function of physical systems and determine overall transfer		
	function using block diagram algebra and signal flow graphs.		
EE2205.2	Obtain the time response of first and specifications of second order systems		
	and determine error constants. Analyze the absolute and relative stability of		
	LTI systems using Routh's stability criterion and root locus method.		
EE2205.3	Analyze the stability of LTI systems using frequency response methods.		
EE2205.4	Design Lag, Lead, Lag-Lead compensators to improve system		
	performance usingBode Diagrams.		
EE2205.5	Apply state space analysis concepts to represent physical systems as state		
	models, derive transfer function and determine the response.		
EE2205.6	Understand the concepts of controllability and observability		

COURSE NAME: INDUCTION AND SYNCHRONOUS MACHINES LAB

COURSE CODE: EE22L1		
EE22L1.1	Aanalyse the speed control methods on 3-phase Induction Motor.	
EE22L1.2	Evaluate the performance of 3-phase Induction Motor by obtaining the	
	locus diagramand equivalent circuit of 3-phase Induction Motor.	
EE22L1.3	Adapt the power factor improvement methods for single phase Induction	
	Motor.	
EE22L1.4	Pre-determine the regulation of 3-phase alternator.	
EE22L1.5	Determine the synchronous machine reactance of 3-phase alternator	
EE22L1.5	The locus diagramand equivalent circuit of 3-phase Induction Motor.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.)

KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

		Т	т	D	C
GOUDGE		L		P	C
COURSE I	NAME: CONTROL SYSTEMS LAB	0	0	3	1.5
COURSE CODE: EE22L2					
E22L2.1	Analyze the performancesynchros. of Magnetic amplifier, D.C and A.C.	servo			
	motors and synchros.				
E22L2.2	Design of PID controllers and compensators				
E22L2.3	Evaluate temperature control of an oven using PID controller				
E22L2.4	Determine the transfer function of D.C Motor and examine the truth tabl	e of			
	logicgates using PLC.				
E22L2.5	Judge the stability in time and frequency domain and Kalman's test fo	r			
	controllability and observability.				
E22L2.6	D.C Motor and examine the truth table of logicgates using PLC.				

COURSE NAME: PYTHON PROGRAMMING LAB			
COURSE (COURSE CODE: EE22L3		
EE22L3.1	Introduce core programming concepts of Python programming language.		
EE22L3.2	Demonstrate about Python data structures like Lists, Tuples, Sets and dictionaries.		
EE22L3.3	Implement Functions, Modules and Regular Expressions in Python Programmingand to create practical and contemporary applications using these.		
EE22L3.4	Demonstrate about Python data structures like Lists.		
EE22L3.5	Demonstrate about Python data structures like Tuples.		
EE22L3.6	Demonstrate about Python data structures like Sets and dictionarie.		

III YEAR-1 SEM

COURSE NAME: POWER SYSTEMS-II		
COURSE CODE: EE3101		
EE3101.1	Calculate parameters of transmission lines for different circuit configurations.	
EE3101.2	Determine the performance of short, medium and long transmission lines.	
EE3101.3	Analyse the effect of travelling waves .	
EE3101.4	Analyse the effect of transmission lines.	
EE3101.5	Analyse the various voltage control methods and effect of corona.	
EE3101.6	Calculate sag/tension of transmission lines and performance of line insulators.	

COURSE NAME: POWER ELECTRONICS		
COURSE CODE: EE3102		
EE3102.1	Illustrate the static and dynamic characteristics of scr, power-mosfet and	
	power-igbt.	
EE3102.2	Analyse the operation of phase-controlled rectifiers.	
EE3102.3	Analyse the operation of three-phase full-wave converters.	
EE3102.4	Analyse the operation of ac voltage controllers and cycloconverters.	
EE3102.5	Examine the operation and design of different types of dc-dc converters.	
EE3102.6	Analyse the operation of pwm inverters for voltage control and harmonic	
	mitigation.	

COURSE NAME: CONTROL SYSTEMS			
COURSE (COURSE CODE: EE3103		
EE3103.1	Derive the transfer function of physical systems and determination of overall		
	transfer function using block diagram algebra and signal flow graphs.		
EE3103.2	Determine time response specifications of second order systems and absolute		
	and relative stability of lti systems using root locus method.		
EE3103.3	Determine time response specifications of second order systems and absolute		
	and relative stability of lti systems using routh's stability criterion.		
EE3103.4	Analyze the stability of lti systems using frequency response methods.		
EE3103.5	Design lag, lead, lag-lead compensators to improve system performance using		
	bode diagrams.		
EE3103.6	Represent physical systems as state models and determine the response.		
	Understand the concepts of controllability and observability.		

COURSE NAME: RENEWABLE ENERGY SOURCES		
COURSE CODE: EE3104		
EE3104.1	Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's	
	surface and solar energy storage.	
EE3104.2	Illustrate the components of wind energy systems.	
EE3104.3	Illustrate the working of biomass, digesters.	
EE3104.4	Illustrate the working of geothermal plants.	
EE3104.5	Demonstrate the principle of energy production from otec, tidal and waves.	
EE3104.6	Evaluate the concept and working of fuel cells & mhd power generation.	

ESWAR COLLEGE OF ENGINEERING (Approved by AICTE, & Affiliated to JNTUK, A.P.)

KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: CONCEPTS OF CONTROL SYSTEMS (ELACTIVE)		
COURSE CODE: EE3105		
EE3105.1	Draw impedance diagram for a power system network and calculate per unit quantities.	
EE3105.2	Apply the load flow solution to a power system using different methods.	
EE3105.3	Form zbus for a power system networks and analyse the effect of symmetrical faults.	
EE3105.4	Find the sequence components.	
EE3105.5	Power system components and analyse its effects of unsymmetrical faults.	
EE3105.6	Analyse the stability concepts of a power system.	

COURSE NAME: CONTROL SYSTEMS LABORATORY		
COURSE CODE: EE31L1		
EE31L1.1	Analyze the performance and working magnetic amplifier, d.c and a.c. servo	
	motors and synchros.	
EE31L1.2	Design P,Pi,Pd And Pid Controllers.	
EE31L1.3	Design lag, lead and lag-lead compensators.	
EE31L1.4	Evaluate temperature control of an oven using pid controller.	
EE31L1.5	Determine the transfer function of d.c motor.	
EE31L1.6	Analyze the performance of d.c and a.c servo motor.	

COURSE NAME: POWER ELECTRONICS LABORATORY			
COURSE (COURSE CODE: EE31L2		
EE31L2.1	Analyse characteristics of various power electronic devices and design firing circuits for scr.		
EE31L2.2	Analyse the performance of single–phase dual, three–phase full–wave bridge converters and dual converter with both resistive and inductive loads.		
EE31L2.3	Examine the operation of single-phase ac voltage regulator.		
EE31L2.4	Cycloconverter with resistive and inductive loads.		
EE31L2.5	Differentiate the working and control of buck converter and boost converter.		
EE31L2.6	Differentiate the working & control of square wave inverter and pwm inverter.		

ESWAR COLLEGE OF ENGINEERING (Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

COURSE NAME: SOFT SKILL COURSE EMPLOYABILITY			
COURSE (COURSE CODE: EE31L3		
EE31L3.1	Follow strategies in minimizing time consumption in problem solving Apply		
	shortcut methods to solve proublems.		
EE31L3.2	Confidently solve any mathematical problems and utilize these mathematical		
	skills both in their professional as well as personal life.		
EE31L3.3	Analyze, summarize and present information in quantitative forms including		
	graphs and formulas.		
EE31L3.4	Analyze, summarize and present information in quantitative tables.		
EE31L3.5	Understand the core competencies to succeed in professional and personal		
	life.		
EE31L3.6	□ Learn and demonstrate a set of practical skills such as time management,		
	self-management, handling conflicts, team leadership, etc.		

III YEAR-II SEM

COURSE NAME: MICROPROCESSORS AND MICROCONTROLLERS	
COURSE CODE: EE3201	
EE3201.1	Know the concepts of the microprocessor capability in general and explore
	the evaluation of microprocessors.
EE3201.2	Analyse the instruction sets - addressing modes - minimum and maximum
	modes operations of 8086 microprocessors.
EE3201.3	Analyse the microcontroller and interfacing capability.
EE3201.4	Describe the architecture and interfacing of 8051 controller.
EE3201.5	Know the concepts of pic micro controller and its programming.
EE3201.6	Analyse the addressing modes.

COURSE NAME: ELECTRICAL MEASUREMENTS AND INSTRUMENTATION	
COURSE CODE: EE3202	
EE3202.1	Know the construction and working of various types of analog instruments.
EE3202.2	Describe the construction and working of wattmeter and power factor meters.
EE3202.3	Know the construction various bridges for the measurement resistance -
	inductance and capacitance.
EE3202.4	Know the construction and working various bridges for the measurement
	resistance - inductance and capacitance.
EE3202.5	Know the operational concepts of various transducers.
EE3202.6	Know the construction and operation digital meters.

(Approved by AICTE, & Affiliated to JNTUK, A.P.)

KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

COURSE NAME: POWER SYSTEM ANALYSIS		
COURSE (COURSE CODE: EE3203	
EE3203.1	Draw impedance diagram for a power system network and calculate per unit	
	quantities.	
EE3203.2	Apply the load flow solution to a power system using different methods.	
EE3203.3	Form zbus for a power system networks and analyse the effect of symmetrical	
	faults.	
EE3203.4	Find the sequence components.	
EE3203.5	Power system components and analyse its effects of unsymmetrical faults.	
EE3203.6	Analyse the stability concepts of a power system.	

COURSE NAME: SIGNALS AND SYSTEMS	
COURSE CODE: EE3204	
EE3204.1	Apply the knowledge of various signals and operations.
EE3204.2	Analyze the spectral characteristics of periodic signals using fourier analysis.
EE3204.3	Classify the systems based on their properties.
EE3204.4	Determine the response of lsi system using convolution.
EE3204.5	Understand the process of sampling and the effects of under sampling.
EE3204.6	Apply Laplace and z-transforms to analyze signals and systems (continuous
	& discrete).

COURSE NAME: SWITCHGEAR AND PROTECTION		
COURSE (COURSE CODE: EE3205	
EE3205.1	Illustrate the principles of arc interruption for application to high voltage	
	circuit breakers of air - oil - vacuum - sf6 gas type.	
EE3205.2	Analyse the working principle and operation of different types of	
	electromagnetic protective relays.	
EE3205.3	Acquire knowledge of protective schemes for generator and transformers for	
	different fault conditions.	
EE3205.4	Classify various types of protective schemes used for feeders.	
EE3205.5	Bus bar protection and types of static relays.	
EE3205.6	Analyse the operation of different types of over voltages protective schemes	
	required for insulation co-ordination and types of neutral grounding.	

COURSE NAME: ELECTRICAL MEASUREMENTS AND INSRUMENTATION LABORATORY

COURSE CODE: EE32L1	
EE32L1.1	Know about the phantom loading.
EE32L1.2	Learn the calibration process.
EE32L1.3	Measure the electrical parameters voltage - current - power - energy and
	electrical characteristics of resistance - inductance and capacitance.
EE32L1.4	Gain the skill knowledge of various brides and their applications.
EE32L1.5	Learn the usage of ct's - pt's for measurement purpose.
EE32L1.6	Know the characteristics of transducers.

(Approved by AICTE, & Affiliated to JNTUK, A.P.)

KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

COURSE NAME: MICRO PROCESSORS AND MICRO CONTROLLERS LAB	
COURSE CODE: EE32L2	
EE32L2.1	Write assembly language program using 8086 microprocessor based on
	arithmetic - logical - number systems and shift operations.
EE32L2.2	Write assembly language programs for numeric operations and array handling
	problems.
EE32L2.3	Write a assembly program on string operations.
EE32L2.4	Interface 8086 with i/o and other devices.
EE32L2.5	Do parallel and serial communication using 8051 & pic 18 micro controllers.
EE32L2.6	Program microprocessors and microcontrollers for real world applications.

COURSE NAME: POWER SYSTEMS AND SIMULATION LAB	
COURSE CODE: EE32L3	
EE32L3.1	Estimate the sequence impedances of 3-phase transformer and alternators.
EE32L3.2	Evaluate the performance of transmission lines.
EE32L3.3	Analyse and simulate power flow methods in power systems.
EE32L3.4	Analyse and simulate the performance of pi controller for load frequency
	control.
EE32L3.5	Analyse and simulate stability studies of power systems.
EE32L3.6	Simulate the performance of pi controller.

IV YEAR-I SEM

COURSE NAME: SWITCHGEAR AND PROTECTION		
COURSE (COURSE CODE:EE4101	
EE4101.1	Understand the principles of arc interruption for application to high voltage	
	circuit breakers of air, oil, vacuum, sf6 gas type.	
EE4101.2	Understand the working principle and operation of different types of	
	electromagnetic protective relays.	
EE4101.3	Students acquire knowledge of faults and protective schemes for high power	
	generator and transformers.	
EE4101.4	Improves the ability to understand various types of protective schemes used	
	for feeders and bus bar protection.	
EE4101.5	Understand different types of static relays and their applications.	
EE4101.6	Understand different types of over voltages and protective schemes required	
	for insulation co-ordination.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.)

KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: OOPS THROUGH JAVA	
COURSE CODE: EE4102	
EE4102.1	Understand java programming concepts and utilize java graphical user
	interface in program writing.
EE4102.2	Write, compile, execute and troubleshoot java programming for networking
	concepts.
EE4102.3	Build java application for distributed environment.
EE4102.4	Design and develop multi-tier applications.
EE4102.5	Identify and analyze enterprise applications.
EE4102.6	Java concepts use in graphical user interface.

COURSE NAME: RENEWABLE ENERGY SYSTEMS		
COURSE (COURSE CODE: EE4103	
EE4103.1	Analyze solar radiation data, extraterrestrial radiation, and radiation on earth's	
	surface.	
EE4103.2	Design solar thermal collectors, solar thermal plants.	
EE4103.3	Design solar photo voltaic systems.	
EE4103.4	Develop maximum power point techniques in solar pv and wind energy	
	systems.	
EE4103.5	Explain wind energy conversion systems, wind generators, power generation.	
EE4103.6	Explain basic principle and working of hydro, tidal, biomass, fuel cell and	
	geothermal systems.	

COURSE NAME:UTILIZATION OF ELECTRICAL ENERGY		
COURSE (COURSE CODE: EE4104	
EF4104 1	Know the various sources of electrical energy and its generation technologies	
EE4104.1 FF4104.2	Know various types of illumination equipment	
EE4104.2	Know various types of multimation equipment.	
EE4104.3	Illumination measurement and illumination techniques.	
	Learn about various methods used for electrical energy based heating and	
EE4104.4	welding applications.	
	Know about the mechanisms, equipment and technology used in the electric	
EE4104.5	traction.	
	Understand the importance of electrical earthing, earthing equipment and	
EE4104.6	electrical earthing measurement methods	

(Approved by AICTE, & Affiliated to JNTUK, A.P.)

KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

COURSE NAME: HIGH VOLTAGE ENGINEERING		
COURSE CODE: EE4105		
EE4105.1	Acquire knowledge of principle of operation, working of differentelectronic	
EE4105.2	Select the instrument to be used based on the requirements.	
EE4105.3	Understand and analyze different signal generators and analyzers.	
EE4105.4	Understand the design of oscilloscopes for different applications.	
EE4105.5	Design different transducers for measurement of different parameters	
EE4105.6	Learn and understand the use of various measuring techniques for measurement of different physical parameters using different classes of transducers	

COURSE NAME: Linear & Digital IC Applications Laboratory		
COURSE CODE: EE41L1		
EE41L1.1	Understand the characteristics of ics-741, 555, 565, 566.	
EE41L1.2	Apply the concepts of IC 741 for different applications.	
EE41L1.3	Analyse the data connection circuits.	
EE41L1.4	Develop the digital circuits.	
EE41L1.5	Model the counters & Registers using IC's.	
EE41L1.6	To model the digital circuits for different applications.	

COURSE NAME: Power Systems& Simulation Laboratory		
COURSE CODE: EE41L2		
EE41L2.1	Determine the parameters of various power system components which are	
	frequently occur in power system studies.	
EE41L2.2	He can execute energy management systems functions at load dispatch center.	
EE41L2.3	To impart the practical knowledge of functioning of various power system	
	components	
EE41L2.4	Determination of various parameters .	
EE41L2.5	LFC and Economic dispatch.	
EE41L2.6	Simulation of load flows, transient stability.	

IV YEAR-II SEM

COURSE NAME: EMBEDDED SYSTEM		
COURSE CODE: EE4201		
EE4201.1	Understand the basic concepts of an embedded system.	
EE4201.2	Able to know an embedded system design approach to perform a specific function.	
EE4201.3	The hardware components required for an embedded system.	
EE4201.4	The design approach of an embedded hardware.	
EE4201.5	The various embedded firmware design approaches on embedded environment.	
EE4201.6	Understand how to integrate hardware and firmware of an embedded system using real time operating system.	

COURSE NAME: SPECIAL ELECTRICAL MACHINES		
COURSE CODE: EE4202		
EE4202.1	Distinguish between brush dc motor and brush less dc motor. \Box	
EE4202.2	explain the performance and control of stepper motors, and their applications.	
EE4202.3	explain theory of operation and control of switched motor. \Box	
EE4202.4	explain theory of operation and control of reluctance motor.	
EE4202.5	explain the theory of travelling magnetic field and applications of linear	
	motors.	
EE4202.6	understand the significance of electrical motors for traction drives.	

COURSE NAME: EMBEDDED SYSTEMS		
COURSE CODE: EE4203		
EE4203.1	distinguish between brush dc motor and brush less dc motor. \Box	
EE4203.2	explain the performance and control of stepper motors, and their applications.	
EE4203.3	explain theory of operation and control of switched motor. \Box	
EE4203.4	explain theory of operation and control of reluctance motor.	
EE4203.5	explain the theory of travelling magnetic field and applications of linear	
	motors.	
EE4203.6	understand the significance of electrical motors for traction drives.	